
672 A.D.Myshkis, L.A.Slobozhanin and A.D.Tiuptsov 

A, = 2 / 4, AR = (-1)‘c+1 9 i (16%” - 9” i 4), k > I 

where A, are specified coefficients of expansion of function ctg (9 I 2) cos 8 + 
sin 0. 

r”rom this we obtain for U, (r) formulas in terms of cylindrical functions, 
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The solution of the problem in the title is given in quadrature% 
When angular points (for example, a pile with a conucal tip) are present at the 

section occupied by the pile, tensile stresses are possible near its endpoint if it is 
assumed that adhesion without friction holds on this section. Otherwise cracks 
must be taken into account, It has been established that the stresses on the boun- 
dary of an axisymmetric pile differ from the corresponding stresses in the plane 
problem of wedging. Especially simple formulas are obtained in the problem of 
penetration of semi-infinite pile into an elastic space. 

1, Plane problem, The solution of the plane problem of wedging by a thin, 
rigid, smooth wedge along the ox -axis of an elastic half-space is given in [ 11. Let us 
indicate the results referred here by starting from the representation of resolution as [ 23 
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q,, {r} = Re [k*@ f iyW + k%f $ xY’] {_i 

k+ = ko, k- -z l-f- ko, koz P 
h-i-P 
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(1.1) 

The analytic fuuctions of the complex argument z = x + iy for the problem under 
consideration are 

2P - 
*’ = 1 + ko 

L 
Here the principal values are understood for the logarithms, t is the portion of the 

ox -axis where the derivative %’ is not zero, and u (z) is the displacement of points of 

the ox-axis caused by the thin wedge. Correspondingly we derive 

2, Wedging of a half-rpacr, To solve the appropriate three-dimensional 

problem, let us use the representation of the solution given in [33: 

u = (au, - Bus>, u = (/3ue - aus) 

w = <w,>, cI, = cos 8, p = sin 8 

Here and henceforth, the angular brackets will denote integration with respect to 0 
between 0 and %c. In the case of an isotropic body the functions u0 (E, z, 9), w,, (E, 

2, e), 5 = as $ j!Jy are the solutions of the equilibrium equations of plane elasticity 
theory in the &z -plane, and the function u,, (E, z, 0) makes the two-dimensional la- 
place operator vanish in this same plane. 

If u,, wg depends only on ,, z. then in the absence of torsion (~a zz 0) , we obtain 
a solution possessing axial symmetry 

(r} =(f)$:ar4~~~i)>, u!= <w,(pa,z)>, pa==~2+7~2 (2.1) 

Let a thin rigid pile of given shape 

U, (0; 2) = f (z), 0 < a < H 

be driven to a depth H along the oz -axis into a half-space z > 0, whose boundary 

2 = 0 is stress-free. 

The function f (z) is continuous and has a piecewise-continuous first derivative. It 

is required to find the state of stress and strain of the half-space. It is assumed that the 
desired stresses vanish at infinity and the elastic displacements are bounded everywhere. 

We obtain the solution of the problem posed by rotating the solution (1.1) around the 
08 -axis, i.e. by setting in (2.1) 

Here CD,, Y0 depend on Q = z f it, E = pa and are defined by the formulas 
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(2.3) 

Using the general relationship between the stress components and formulas (5.3) from 

131, we obtain 

(2.4) 

The remaining stress components are easily found. In particular, r@‘pe EG 0 under the 
considered conditions. It is easy to verify that the stress components (2.4) satisfy the 
equilibrium equations in cyclindrical coordinates. Let us note that the solution of the 

problem posed is unique since the solution of the appropriate homogeneo~ problem, 
corresponding to zero boundary data and conditions at infinity, equals zero. 

The relationships (2.1) - (2.3) permit writing the radial and axial displacements as 

(2.5) 

Here ~a, tea,, are related to @so, yso by means of (2.2). The formulas for the 

stresses 00 

(2.6) 

are written analogously. 

The connection between ozD’, z,,c” and moo, Yoo is determined by (2.4). The in- 

ner integrals in (2.6) and in the formulas for the other stress tensor components are eva- 
luated in terms of elementary functions. Some properties of the solutions are established 
directly by using the reparesntations (2.5) and (2.6). We show that the solution construc- 

ted satisfies all the conditions of the problem posed. It is easy to verify that o, = 

T *p = 0 for 2 z= 0. Furthermore, let us examine the values of zzp and up on the 02 - 

axis. We have 
%P = - i f'(q) ~~~~i~~~~~~~~ = 0 

0 

because ‘?ss is real for p-0. Since y,,*, Yoo’ are hence a!so real, then 
n/z 

u,(O,z)= - +- 
5 i 

f’ (IQ ’ ReWiadOdq 
0 

Here “DO,+ is the limit value of the function (Da0 on the upper edge of the slit 

(0, r)) and on the real oz-axis of the az -plane for z > %I. Taking into account the 
selection of the branches of the logarithms, we. have 
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Hence, the radial displacement on the oz -axis is up (0, z) = 0 for z > H , while 

doe z < H 

%(O,Z) = - f’(rl)drl= f(z) 
s 
z 

since f (H) = 0 by continuity. 
It can be verified that the elastic displacements up, w and therefore the stress com- 

ponents also, vanish at infinity if the depth of submersion of the pile H is finite. For 

example, let us find the displacement w (p, 0) on the boundary z = 0 of the half- 

space. From (2.5) we deduce 

W(P,O) =$’ 

nia 

1 1 
f’ (q) Re Y,,,dedq = ' "W @q 

0 ! I/P% + 92 

If f’ (q) does not grow, then bulging of the half-space boundary will occur under the 

influence of the pile driven in. For example, we have for a pile of constant thickness 

2h on the section (0, Hi) with a conical tip on the section (Hi, Hs) of the oz -axis 

HI+H~ w(p,O)= --h - - -f/pa + Hlz + l/p2 + He2 

Evaluating the inner integrals in (2.4), we obtain 

6, = -$ f’(q) {[z, 1 z1 I-lR, - Rz - 2q~,R2~] k, - [z,R,R,* - 

zzRsRz* + 271 (zaRz3 - R,R,*)j k, - 2 (zlRIR1* - z,RzR,*) + 

ZI I ZI I R13 - z,Ra’} drl 

Go = + 
1 

f’ (7) (2 (R2R2* - z1 1 z, 1-l R,* - Y~R,~) + 

hR1R1* - dW-h* + 271 (zzR2' - R2R2*)1 k,) drl 

a, = - -$- 

s. 
f' (q) [zl (I z1 I R13 - zzR2”) + 2qz (2~~~ - p”) Rs5] dq 

z zp=-- “2 
s 

f’(rO[(zJR1’- ~2R2~+ RlRl* --2R2* + 6qzz2fl21 do 

Zl = z - q, z2= Zf% Ri2 zz p2+ 52 

1 
Rj*= ++lZjl, i=1,2, ii,= + 

On the oz-axis we have 

o, = oil = qoz f’(q) [(I - W z + (3 - k,) 111 ~;%~qdq (2.7) 

The integral in (2.7) is taken between H and H + l for a circular pile of constant 
cross section with a tip of given form f (z) on the section H < z < iY + 1, H > 0. 
If p (z) does not grow on this section, then the material of the half-space is compressed 
on the section (0, H) and stretched on the section (H + 1, co) , The behavior ofthe 
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material on the section (H, H + E) depends on the form of the function f (2). For 
example, we obtain for a pile with a conical tip 

Q,=Qg= g,jYl ---+)&e-r X (2.8) 

(X (Q - (1 - r) E lEZ+ (1 -$- r) k&-i_ r (Zk*- 1)](1 -+- Q-s{7 + Q-“) 

X (Q = Ii‘2 ln (1 + E> (y - 5) (1 - E)-‘(y -t_ Q-1, y ( $j < 1 

g = (3 - ic$J) (2 - kp, y == H(Nj- 1)-l 7 E: :‘= z(H-+ I)-' 

It is seen that the right side in (2.8) vanishes for E = &, E. ( 1, while the stresses 

become tensile on the section &, ( 5 ( 1 , which corresponds to the condition of ad- 
hesion wi~out friction. If it is absent, then a crack originates here which must be taken 
into account for a more accurate description of the behavior of the half-space under the 
influence of the pile with a conic.al tip. The left end of the crack cannot be located to 

the right of g = &,. 

letting E + 0, y -+ 1 in (2.8). we obtain results referring to a circular cylindrical 
pile of radius h, driven to a depth H 

a, =I og = - q&P’E [(I - kJ a$ + (3 - &)I (1 - E)“f(f + Q-s (2.9) 

It is seen from (2,8), (2.9) that the stresses on the boundary of the pile differ from the 
~~~nd~g stresses in the plane wedging problem Cl]. 

If a circular pile of radius h has a tip in the form of an ellipsoid of revolution, then 

the integral in (2.7) is evaluated in terms of elementary functions. The formulas so ob- 

tained are awkw~d, hence, we limit ourselves to writing the result in the form (t’z, 2 are 
the semi-axes of the ellipsoid) , 

Therefore, the stresses o,, oe on the section of the oz-axis, where the pile is located, 
are bounded everywhere incl~ing the ends of the tip, The material on a section of the 
pile is compressed, while it is stretched on tbe oz-axis outside the section. However, the 

tensile stresses q,, oe become ~bo~ded as the end of the pile is ap~~~hed from the 

right along the oz-axis. 

3. Penetration of a semi-infinite Pile, If a thin,sm~th,circular pile 
of the form 
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(f (0) = h, f (0 = 0) 

is driven into an infinite elastic space, then we obtain the appropriate results from the 
above by setting rl = E + H and letting H tend to infinity, For example, we deduce 
from (2.7) on the oz-axis I 

Qp = be = go - 2--koz , z - - f’ (5) 4 
4 s n 4-z 

In the case of a conical tip 
h2-ko l-_z 

60 = (se = - qo _ _ 
1 4 b-y-- 

(3. I) 

(3.2) 

The material is everywhere compressed on a section of the pile, with the exception 
of the section z. < z < I, z, = r/sl. 

Letting 2 tend to zero in (3.2), we obtain the stresses on the boundary of a thin, semi- 
infinite cylindrical pile 

GP’G@;‘z$! s0; 

Here, in the presence of a crack at the end of the pile, we find the function governing 
its shape by inverting the integral I = 0. 

In conclusion, let us note that if the stress ap (0, Z) on its surface is reduced by using 
the thinness of the pile, then we generally obtain an unequllibrated load, whose result- 
ant directed along the oz-axis will be 

R = - 2n; 
s 

c$, (0, z) jf’dz 
r_. 

Here L is the section of the oz-axis where the integrand differes from zero, Such a 
force, but of opposite direction, must be applied to a smooth, thin pile to maintain 
it in a given position. For example, we have 

for a semi- infinite pile of constant radius h with an elliptical tip on the section 0 <z < I 
Hence, the force 

should be applied to the pile at infinity, 
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